Read, J.; Pfahringer, B.; Holmes, G.; Frank, E. (2011). Classifier chains for multi-label classification. In Machine Learning, 85(), 333--359.
slashdot
mldr.datasets::get.mldr("slashdot")
Summary
| Instances | 3782 |
|---|---|
| Attributes | 1101 |
| Inputs | 1079 |
| Labels | 22 |
| Labelsets | 156 |
| Single labelsets | 56 |
| Max frequency | 525 |
| Cardinality | 1.1809 |
| Density | 0.0537 |
| Mean IR | 17.6931 |
| SCUMBLE | 0.0131 |
| TCS | 15.1247 |
Citation
Read, J.; Pfahringer, B.; Holmes, G.; Frank, E. (2011). Classifier chains for multi-label classification. In Machine Learning, 85(), 333--359.
@article{,
title = "Classifier chains for multi-label classification",
author = "Read, J. and Pfahringer, B. and Holmes, G. and Frank, E.",
journal = "Machine Learning",
year = "2011",
volume = "85",
issue = "3",
pages = "333--359"
}Concurrence plot
In this concurrence plot, sectors represent labels and links between them depict label co-occurrences. SCUMBLE is a measure designed to assess the concurrence among imbalanced labels.